Stochastic population dynamics: the Poisson approximation.

نویسندگان

  • Hernán G Solari
  • Mario A Natiello
چکیده

We introduce an approximation to stochastic population dynamics based on almost independent Poisson processes whose parameters obey a set of coupled ordinary differential equations. The approximation applies to systems that evolve in terms of events such as death, birth, contagion, emission, absorption, etc., and we assume that the event-rates satisfy a generalized mass-action law. The dynamics of the populations is then the result of the projection from the space of events into the space of populations that determine the state of the system (phase space). The properties of the Poisson approximation are studied in detail. Especially, error bounds for the moment generating function and the generating function receive particular attention. The deterministic approximation for the population fractions and the Langevin-type approximation for the fluctuations around the mean value are recovered within the framework of the Poisson approximation as particular limit cases. However, the proposed framework allows to treat other limit cases and general situations with small populations that lie outside the scope of the standard approaches. The Poisson approximation can be viewed as a general (numerical) integration scheme for this family of problems in population dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The quasi-deterministic limit of population dynamics

We discuss and compare three different, but related, approximations to the stochastic dynamics of populations, all of them having as limit the same deterministic dynamics. The diffusion approximation (van Kampen (1981a); Arnold (1997)), linearized diffusion approximation (Kurtz (1971)) and the Poisson approximation (Aparicio & Solari (2001a); Solari & Natiello (2003b)) are briefly revisited and...

متن کامل

Stochastic functional population dynamics with jumps

In this paper we use a class of stochastic functional Kolmogorov-type model with jumps to describe the evolutions of population dynamics. By constructing a special Lyapunov function, we show that the stochastic functional differential equation associated with our model admits a unique global solution in the positive orthant, and, by the exponential martingale inequality with jumps, we dis...

متن کامل

Stochastic Dynamics of a Time-Delayed Ecosystem Driven by Poisson White Noise Excitation

We investigate the stochastic dynamics of a prey-predator type ecosystem with time delay and the discrete random environmental fluctuations. In this model, the delay effect is represented by a time delay parameter and the effect of the environmental randomness is modeled as Poisson white noise. The stochastic averaging method and the perturbation method are applied to calculate the approximate ...

متن کامل

Computational Method for Fractional-Order Stochastic Delay Differential Equations

Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...

متن کامل

Population dynamics: Poisson approximation and its relation to the Langevin process.

We discuss how to simulate a stochastic evolution process in terms of difference equations with Poisson distributions of independent events when the problem is naturally described by discrete variables. For large populations the Poisson approximation becomes a discrete integration of the Langevin approximation [T. G. Kurtz, J. Appl. Prob. 7, 49 (1970); 8, 344 (1971)]. We analyze when the latter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 67 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2003